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1. Introduction

Conformal field theories in two dimensions have many applications in string theory and

condensed-matter physics. In some applications the system under consideration, say strings

in a given space-time, dictates the theory to be studied. In some other cases however, a

CFT is used as a phenomelogical theory for a system without a known first-principles

description. The relevant theory must then be chosen among the known CFTs according

to the desired properties of the system. This approach relies on the existence of a large

enough number of CFTs among which to choose, and on a good enough knowledge of their

properties. Many rational CFTs are known, and their properties are often well-understood.

However most CFTs are non-rational, and only a few non-rational CFTs have been solved

so far, among them Liouville theory [1] and the H+
3 model [2]. It is therefore interesting

to expand the small family of solvable non-rational CFTs.

The inspiration for the present article comes from the relation [3] between the corre-

lation functions of the H+
3 model and correlation functions of Liouville theory. Namely,

correlators of generic H+
3 primary fields are related to correlators involving both generic Li-

ouville primary fields, and the particular field V− 1
2b

where b is related to the central charge

of Liouville theory by c = 1+6(b+ b−1)2. This field is known to be a degenerate field with

a null vector at level two, which implies that Liouville correlators involving this field obey

second-order differential equations [4]. But there is an infinite series of degenerate fields in
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Liouville theory, which lead to higher-order differential equations. It is therefore natural

to wonder whether Liouville correlators involving such degenerate fields — or even generic

fields — can be related to correlators in some models which would be generalizations of

the H+
3 model.

We will propose a positive answer to this question, and sketch some properties of the

resulting models. In contrast to the usual situation in the study of conformal field theory,

we start with the solution of the models, namely an ansatz for their correlators in terms

of Liouville correlators. The problem is then to reconstruct the models, and in particular

their symmetry algebra, from their correlators. This is a priori a non-trivial problem,

because our ansatz gives us only correlators of primary fields, but the notion of a primary

field is not even defined if we do not know the symmetry algebra. Fortunately, the correct

symmetry algebra will be suggested by the Lagrangian description of the models, which is

very similar to the free-field description of the H+
3 model. (The new Lagrangians however

do not correspond to sigma models.) We will then check that this symmetry algebra is

consistent with the properties of the correlators, in particular in the case when they obey

third-order differential equations.

2. An ansatz for the correlation functions

Our ansatz will be directly inspired by the H+
3 -Liouville relation, we will therefore begin

by a reminder of this relation. More details and references can be found in [3].

2.1 Reminder of the H+
3 -Liouville relation

In the conformal bootstrap approach, the H+
3 model is defined by its symmetry algebra,

and primary fields which transform in a certain way with respect to this algebra. Solving

the model means finding the correlation functions of the primary fields; these correlation

functions are subject to symmetry and consistency conditions. Let us briefly review these

objects. The chiral symmetry algebra of the H+
3 model is the affine Lie algebra ŝℓ2, which

is generated by three currents J3(z), J+(z), J−(z) with the following operator product

expansions (OPEs):

J3(z)J3(w) = −
k
2

(z − w)2
+ O(1) , (2.1)

J3(z)J±(w) = ±J±(w)

z − w
+ O(1) , (2.2)

J+(z)J−(w) = − k

(z − w)2
+

2J3(w)

z − w
+ O(1) , (2.3)

where k > 2 is called the level of the affine Lie algebra. As a consequence, the H+
3

model is a conformal field theory with central charge c = 3k
k−2 ; the stress-energy tensor

which generates the conformal transformations can be deduced from the currents by the

Sugawara construction [5]

T =
1

2(k − 2)

[
(J+J−) + (J−J+) − 2(J3J3)

]
, (2.4)
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where we use the following definition of the normal-ordered product of operators:

(AB)(z) =
1

2πi

∮

z

dx
dx

x − z
A(x)B(z) . (2.5)

Affine primary operators Φj(µ|w) with spin j, isospin µ and worldsheet position w are

defined by their OPEs with the currents, from which their OPEs with the stress-energy

tensor follows:

J−(z)Φj(µ|w) =
µ

z − w
Φj(µ|w) + O(1) , (2.6)

J3(z)Φj(µ|w) =
µ ∂

∂µ

z − w
Φj(µ|w) + O(1) , (2.7)

J+(z)Φj(µ|w) =
µ ∂2

∂µ2 − j(j+1)
µ

z − w
Φj(µ|w) + O(1) , (2.8)

T (z)Φj(µ|w) =
∆j

(z − w)2
Φj(µ|w) +

1

z − w

∂

∂w
Φj(µ|w) + O(1) , (2.9)

where the conformal dimension of the field Φj(µ|w) is

∆j = −j(j + 1)

k − 2
. (2.10)

The fields Φj(µ|w) have similar OPEs with the antiholomorphic currents J̄a(z̄) and stress-

energy tensor T̄ (z̄), but their dependences on z̄ and µ̄ will be kept implicit. The spin takes

values j ∈ −1
2 + iR, corresponding to continuous representations of the algebra ŝℓ2.

In the H+
3 model all fields are either affine primaries or affine descendents thereof,

and correlators of affine descendents can be deduced from correlators of affine primaries by

the Ward identities. Therefore, in order to solve the model on the Riemann sphere with

coordinates z, z̄, it is enough to determine the n-point functions of affine primaries for all n:

Ωn ≡
〈

n∏

i=1

Φji(µi|zi)

〉
. (2.11)

Now all such correlators of affine primaries are related to Liouville theory correlators as

follows:

Ωn = δ(2)(
∑n

i=1µi)|u|2|Θn|
1
b2

〈
n∏

i=1

Vαi
(zi)

n−2∏

a=1

V− 1
2b

(ya)

〉
, (2.12)

where we consider Liouville theory at parameter

b =
1√

k − 2
, (2.13)

with primary operators Vα(z) with momenta

α = b(j + 1) +
1

2b
, (2.14)
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and conformal dimensions

∆α = α(b + b−1 − α) . (2.15)

The objects u and Θ are defined by

u =
∑n

i=1µizi , Θn =

∏
i<j zij

∏
a<b yab

∏n
i=1

∏n−2
a=1(ya − zi)

, (2.16)

while the positions ya of the operators V− 1
2b

(ya) are determined in terms of µi, zi by

Sklyanin’s change of variables

n∑

i=1

µi

t − zi
= u

∏n−2
a=1(t − ya)∏n
i=1(t − zi)

. (2.17)

2.2 Motivation of the ansatz

Let us replace the fields V− 1
2b

in the H+
3 -Liouville relation (2.12) with more general fields

V−m
2b

with m ∈ C, and modify the prefactors as well:

Ω(m)
n = δ(2)(

∑n
i=1µi)|u|2λ|Θn|2θ

〈
n∏

i=1

Vαi
(zi)

n−2∏

a=1

V−m
2b

(ya)

〉
, (2.18)

where λ and θ are numbers to be determined. Can we still interpret Ω
(m)
n as an n-point

function (2.11) of fields Φj(µ|z) in some conformal field theory? In the process we keep the

definitions of u,Θ and ya eqs. (2.16), (2.17), but the nature of the operator Φj(µ|z) will

be modified: it will now be a primary field with respect to an unknown symmetry algebra,

with an unknown conformal dimension ∆
(m)
j with respect to a Virasoro algebra with an

unknown central charge.

We hope that this interpretation of Ω
(m)
n exists for any choice of m, but we expect the

values of the extra parameters λ, θ in (2.18) to be determined in terms of m by symmetry

and other requirements. Let us first consider the constraints on the three-point function

due to global conformal invariance. This requires that the dependence of Ω
(m)
3 on the

worldsheet coordinates z1, z2, z3 should be

Ω
(m)
3 ∝ |z12|−2

“

∆
(m)
j1

+∆
(m)
j2

−∆
(m)
j3

”

|z13|−2
“

∆
(m)
j1

+∆
(m)
j3

−∆
(m)
j2

”

|z23|−2
“

∆
(m)
j2

+∆
(m)
j3

−∆
(m)
j1

”

, (2.19)

with an arbitrary prefactor depending on µ1, µ2, µ3. According to our ansatz, Ω
(m)
3 is

actually related to a four-point Liouville correlator, which behaves as

〈
Vα1(z1)Vα2(z2)Vα3(z3)V−m

2b
(y1)

〉

= |z12|2∆−

m
2b

−2∆12 |z13|−2∆
−

m
2b

−2∆13 |z23|2∆−

m
2b

−2∆23 |y1 − z2|−4∆
−

m
2b G(z) , (2.20)

where we use the notations ∆12 = ∆α1 +∆α2 −∆α3 for the Liouville conformal dimensions,

and G(z) for a known function of the cross-ratio z = z32(y−z1)
z31(y−z2) whose precise form is not

needed here. From the change of variables (2.17) we have u(y − z2) = µ2z12z23 (in the
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limit t → z2), and in addition z = 1 + µ3

µ2
actually does not depend on z1, z2, z3. Thus, the

equations (2.18) and (2.20) imply

Ω
(m)
3 ∝ |u|2λ+6θ+4∆

−

m
2b |z12|−2θ−2∆

−

m
2b

−2∆12 |z13|−2θ−2∆
−

m
2b

−2∆13 |z23|−2θ−2∆
−

m
2b

−2∆23
.

(2.21)

Comparing with the condition (2.19) reveals that global conformal invariance requires

λ + 3θ + 2∆−m
2b

= 0 , ∆
(m)
ji

= ∆αi
+ ∆−m

2b
+ θ . (2.22)

In order to derive the extra relation which we need for fully determining λ, θ and ∆
(m)
ji

,

we will use a more heuristic reasoning. Consider the behaviour of our ansatz (2.18) near

ya = yb. In the H+
3 case (m = 1), correlators are continuous at such points, a property

which is particularly important in the study of the H+
3 model on the disc [6]. More

generally, in the cases when the Liouville field V−m
2b

is degenerate, the leading behaviour of

two such fields when coming close is

V−m
2b

(ya)V−m
2b

(yb) ∼
yab→0

|yab|−4∆
−

m
2b

+2∆
−

m
b V−m

b
(ya) , (2.23)

and the behaviour of our ansatz is thus

Ω(m)
n ∼

yab→0
|yab|

−4∆
−

m
2b

+2∆
−

m
b

+2θ
. (2.24)

Assuming the critical exponent −4∆−m
2b

+ 2∆−m
b

+ 2θ to vanish, and solving eq. (2.22) as

well, we obtain

θ =
m2

2b2
, λ = m(1 + b−2(1 − m)) , ∆

(m)
j = ∆α − m

4
(2 + 2b−2 − b−2m) . (2.25)

These relations will be assumed to hold not only when the Liouville field V−m
2b

is degenerate,

but in all cases. Notice that it is possible to define a “spin” variable j such that

∆
(m)
j = −(j + 1)(b2j + m − 1) , (2.26)

in which case the momentum α of the corresponding Liouville field Vα(z) is

α = b(j + 1) +
m

2b
. (2.27)

In the following we will argue that the ansatz (2.18), together with the particular

values (2.25) for the parameters λ, θ and the conformal weights of the fields Φj(µ|z), has a

meaning in terms of correlators in a conformal field theory.

3. Symmetry algebra of the new theories

We have checked that our ansatz is consistent with global conformal invariance, let us

now study the rest of the conformal symmetry, and the possible extra symmetries which

underlie our ansatz. To do this, it will be convenient to introduce a Lagrangian description

of the corresponding theories. We will therefore propose such a description, check that

it reproduces the relation (2.18) with Liouville theory, and then use it for deriving the

symmetries.
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3.1 Lagrangian description

We use the same bosonic fields (φ, β, γ) as in the H+
3 model [7], and we propose the following

Lagrangian and stress-energy tensor:

L(m) =
1

2π

[
∂φ∂̄φ + β∂̄γ + β̄∂γ̄ + b2(−ββ̄)me2bφ

]
, (3.1)

T (m) = −β∂γ − (∂φ)2 + (b + b−1(1 − m))∂2φ , (3.2)

where −ββ̄ is assumed to be real positive.

The interaction term L(m)
int = (−ββ̄)me2bφ is marginal with respect to the stress-energy

tensor T (m). In the cases m = 0 (Liouville theory) and m = 1 (H+
3 model) it is known

to be exactly marginal. This follows from the exponential dependence of the interaction

term on φ, a feature which is still present for arbitrary values of m. In perturbative

calculations, many terms in the series expansion of exp−
∫
L(m)

int will then yield vanishing

contributions due to φ-momentum conservation in the free theory. We therefore expect

the interaction to be exactly marginal, which implies that the corresponding theories have

conformal symmetry.

In the case m = 1 of the H+
3 model, integrating out the non-dynamical fields β, β̄ in

the path integral
∫
DφDβDβ̄DγDγ̄ e−

R

d2w L(m)
yields a sigma model, whose target space

is indeed H+
3 . In the general case, it is still possible to integrate out β, β̄ if ℜm > 1

2 , but the

resulting Lagrangian has no sigma model interpretation because it involves higher powers

of ∂̄γ∂γ̄.

The relation between H+
3 and Liouville correlators has been rederived by Hikida and

Schomerus using a path-integral computation [8]. We will now emulate this calculation in

order to rederive our ansatz (2.18) from the path-integral definition of a theory with the

Lagrangian (3.1). Of course, this path-integral definition will be complete only after we

specify the fields Φj(µ|z) in terms of (φ, β, γ):

Φj(µ|z) = |µ|2m(j+1)eµγ−µ̄γ̄e2b(j+1)φ . (3.3)

The path-integral definition of the n-point function is then

Ω(m)
n =

∫
DφDβDβ̄DγDγ̄ e−

R

d2w L(m)
n∏

i=1

Φji(µi|zi) . (3.4)

Let us perform the integrations over γ and γ̄, and then β and β̄:

Ω(m)
n = δ(2)(

∑n
i=1µi)

∫
Dφ e

− 1
2π

R

d2w

„

∂φ∂̄φ+b2
˛

˛

˛u
P

i

µi
w−zi

˛

˛

˛

2m
e2bφ

«

n∏

i=1

|µi|2m(ji+1)e2b(ji+1)φ ,

(3.5)

where we still have u =
∑n

i=1 µizi. We then perform the change of integration variable

φ → φ − mb−1 log |u| . (3.6)

This produces a global factor |u|2m(1+b−2(1−m)), due to an implicit worldsheet curvature

term in the Lagrangian, which corresponds to the linear dilaton term (b + b−1(1−m))∂2φ
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in the stress-energy tensor T (m), eq. (3.2). (For simplicity we have used flat space as a

model of the Riemann sphere and omitted the worldsheet curvature term. This subtlety

is dealt with in [8].) Then, we define ya as the zeroes of
∑n

i=1
µi

w−zi
as in eq. (2.17), and

perform the change of integration variable

ϕ(w) = φ(w) + mb−1 log

∣∣∣∣∣

∏n−2
a=1(w − ya)∏n
i=1(w − zi)

∣∣∣∣∣ . (3.7)

This yields

Ω(m)
n = δ(2)(

∑n
i=1µi) |u|2m(1+b−2(1−m)) |Θn|

m2

b2

×
∫

Dϕ e−
1
2π

R

d2w(∂ϕ∂̄ϕ+b2e2bϕ)
n∏

i=1

e(2b(ji+1)+ m
b

)ϕ(zi)
n−2∏

a=1

e−
m
b

ϕ(ya) , (3.8)

where Θn was defined in eq. (2.16). The second line of this formula is the path-integral

version of the Liouville theory correlator which appears in our ansatz (2.18), with the

expected values for the Liouville momenta αi = b(ji + 1) + m
2b

. And the prefactors also

agree with the expectations (2.25).

Therefore, the path-integral calculation provides a Lagrangian definition (3.1) for the

new theories whose correlators we conjectured. This definition will allow us to easily study

the symmetries of these theories.

3.2 Symmetry algebra

Let us interpret the theories with Lagrangian (3.1) as free theories of the fields (φ, β, γ, β̄, γ̄)

with contractions

〈φ(z)φ(w)〉 = − log |z − w| , 〈β(z)γ(w)〉 =
1

w − z
, (3.9)

deformed by the interaction term L(m)
int = (−ββ̄)me2bφ. The chiral symmetry algebra is

then the set of holomorphic fields whose OPEs with L(m)
int vanish up to total derivatives.

Such chiral fields can be constructed from the basic holomorphic fields ∂φ, β, γ by using

the normal-ordered product (2.5), see for instance [9] for the rules of computing with this

product.

We already know one chiral field, namely the stress-energy tensor T (m) (3.2), which

generates a Virasoro algebra with central charge

c(m) = 3 + 6(b + b−1(1 − m))2 . (3.10)

But in the case of the H+
3 model (m = 1) we know that the creation modes of this Virasoro

algebra are not enough for generating the full spectrum of the model from the fields Φj(µ|z).

These fields are indeed affine primaries, that is primary fields with respect to the much

larger symmetry algebra ŝℓ2. Can we find a larger algebra for general values of m? Let us

introduce the following holomorphic currents:

J− = β , (3.11)

J3 = −βγ − mb−1∂φ , (3.12)

J+ = βγ2 + 2mb−1γ∂φ − (m2b−2 + 2)∂γ , (3.13)
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where normal ordering is implicitly assumed when needed. The OPEs of these currents

obey the relations (2.1)–(2.3) of an ŝℓ2 algebra at level k = 2 + m2b−2. However, only the

currents J− and J3 are symmetries of our model. The current J+ indeed has a nontrivial

OPE with L(m)
int , and is no symmetry. And the stress-energy tensor which we could build

from J−, J3, J+ by the Sugawara construction (2.4) is therefore also no symmetry. It

actually differs from the stress-energy tensor (3.2), with respect to which the interaction

L(m)
int is marginal. The chiral symmetry algebra is therefore generated by the three fields

T, J3, J− (where from now on we omit the superscipt of T (m)), and we compute their OPEs

as

T (z)T (w) =
1
2c(m)

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
+ O(1) , (3.14)

T (z)J−(w) =
J−(w)

(z − w)2
+

∂J−(w)

z − w
+ O(1) , (3.15)

T (z)J3(w) =
(1 − m)(1 − mb−2)

(z − w)3
+

J3(w)

(z − w)2
+

∂J3(w)

z − w
+ O(1) , (3.16)

J−(z)J−(w) = O(1) , (3.17)

J3(z)J−(w) =
J−(w)

w − z
+ O(1) , (3.18)

J3(z)J3(w) = −1 + 1
2m2b−2

(z − w)2
+ O(1) . (3.19)

This looks very much like the subalgebra of the affine algebra ŝℓ2 obtained by removing

the current J+, except that there is now a central term in the TJ3 OPE, so that J3 is no

longer a primary field. Notice that this algebra, unlike the Lagrangian L(m), is invariant

under the duality

b → b−1 , m → mb−2 . (3.20)

Notice also that setting J− = 0 yields a smaller algebra generated by T and J3, which

might be interesting as well.1

It can be checked that the fields Φj(µ|z) are primary with respect to our chiral algebra.

We can indeed compute the OPEs of their free-field realization (3.3) with J−, J3 and T ,

which respectively reproduces the OPEs (2.6), (2.7) and (2.9) with however the conformal

dimension ∆
(m)
j (2.26). And we can check that the correlators (2.18) have the correct

behaviour under global symmetry transformations. We already performed this analysis in

the case of the global conformal transformations of the three-point function Ω
(m)
3 , this is

how we found ∆
(m)
j in the first place. The global Ward identity for J− is (

∑n
i=1 µi)Ω

(m)
n = 0,

which is obviously satisfied. We furthermore compute
(∑n

i=1 µi
∂

∂µi

)
Ω

(m)
n = −(1−m)(1−

1We could even consider a three-parameter family of T, J3 algebras with arbitrary central terms

T (z)T (w) =
1

2
c

(z−w)4
+ · · · , T (z)J3(w) = Q

(z−w)3
+ · · · and J3(z)J3(w) = −

k

2

(z−w)2
+ · · · . The relation

c = 1 − 6Q2

k
defines a subfamily where the identification T = −

1
k
(J3J3) + Q

k
∂J3 is allowed. After in-

troducing a boson ϕ such that J3 = ∂ϕ this corresponds to a linear dilaton theory. Our parameters m, b

parametrize a different subfamily.
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mb−2)Ω
(m)
n . This is what is expected knowing that J3 is no longer primary, see the TJ3

OPE (3.16).

These simple consistency checks leave two questions about our determination of the

symmetry algebra:

1. Is the symmetry algebra large enough? We still have to show that the descen-

dent fields obtained by repeatedly acting on the primaries Φj(µ|z) with the creation

modes of T, J3, J− do span the spectrum. In particular, can the Φj1(µ1|z1)Φ
j2(µ2|z2)

OPE be written as a sum over such descendents? In principle, we could address this

issue by studying the z12 → 0 expansion of our ansatz (2.18) for the correlators Ω
(m)
n .

This would however be tedious. Instead, let us focus on the m = 1 case. The spec-

trum of the H+
3 model is known to be generated by the modes of J3, J+, J−, but we

will now argue that the modes of T, J3, J− are actually enough. Let us define these

modes by T (z) =
∑

n∈Z
Lnz−n−2 and Ja(z) =

∑
n∈Z

Ja
nz−n−1; creation modes are

Ja
n<0 and Ln<0, while primary fields Φj(µ|z) correspond to primary states |p〉 such

that Ln>0|p〉 = Ja
n>0|p〉 = 0. Any level one J+-descendent state can by definition be

written as |d〉 = J+
−1|p′〉 with |p′〉 an affine primary state in the H+

3 spectrum. The

spectrum being made of continuous representations, this primary can be rewritten

as |p′〉 = J−
0 |p〉 with |p〉 another primary. Using the Sugawara construction (2.4), we

then have

|d〉 = J+
−1J

−
0 |p〉 =

[
−J−

−1J
+
0 + 2J3

−1J
3
0 + (k − 2)L−1

]
|p〉 , (3.21)

which is manifestly a combination of L−1, J
3
−1, J

−
−1-descendents of affine primary

states. This reasoning can be iterated to higher level J+-descendent states. This

proof is special to m = 1 and cannot be generalized, but it demonstrates that our

T, J3, J− symmetry algebra is likely large enough.

2. Are the chiral fields algebraically independent? In the H+
3 model, the fact

that the chiral fields T, J+, J3, J− are not independent but related by the Sugawara

construction implies that the correlators obey Knizhnik-Zamolodchikov differential

equations. In our generalized theories with parameter m, correlators (2.18) do obey

differential equations for values of m such that the field V−m
2b

is a Liouville degenerate

field. This happens if

m = p + b2q , p, q = 0, 1, 2 · · · (3.22)

We therefore expect that the structure of our chiral algebra becomes in some sense

reducible for these values of m, so that differential equations can be derived for the

correlators. This is what we will explicitly demonstrate in the case m = 2.

4. Differential equation in the case m = 2

We will first derive the third-order differential equations satisfied by the correlator Ω
(2)
n

from the Belavin-Polyakov-Zamolodchikov equations satisfied by the corresponding Liou-

ville correlators, and then check that these equations can be recovered from our symmetry

algebra.
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4.1 Third-order BPZ equation

The Virasoro module generated by the Liouville field V− 1
b

has a null vector at level three [4]:

χ3 =

[
(−1 + 2b−2)L−3 + 2L−1L−2 +

1

2
b2L3

−1

]
V− 1

b
. (4.1)

Assuming that this null vector vanishes implies that correlators involving V− 1
b

obey third-

order BPZ differential equations. In particular, let us write the BPZ equation associated

to a degenerate field V− 1
b
(y) in the Liouville correlator which appears in our ansatz (2.18).

We call yb 6= y the insertion points of the other degenerate fields so that ya = (y, yb);

moreover we call zI = (zi, yb) the positions of all fields except V− 1
b
(y). The BPZ equation

then involves the following differential operator:

D =
b2

2

∂3

∂y3
+
∑

I

[
∂

∂y

2

y − zI

∂

∂zI
+

2∆αI

(y − zI)2
∂

∂y

]
+
∑

I

[∆− 1
b

+ 2

(y − zI)2
∂

∂zI
+

2∆− 1
b
∆αI

(y − zI)3

]
. (4.2)

This BPZ equation implies D′Ω
(2)
n = 0 where D′ = Θ

2
b2
n DΘ

− 2
b2

n , with Θn defined by

eq. (2.16). We thus wish to compute D′; at the same time we should perform the change

of variables (zi, ya) → (zi, µi) defined by eq. (2.17). In particular we should rewrite
∂

∂zi
= ∂

∂zi

∣∣∣
ya

in terms of δ
δzi

≡ ∂
∂zi

∣∣∣
µj

. This will be done thanks to the identity [3]

n∑

i=1

1

y − zi

∂

∂zi
+
∑

b

1

y − yb

∂

∂yb
− X

∂

∂y
=

n∑

i=1

1

y − zi

δ

δzi
, (4.3)

where we defined

X ≡
∑

b

1

y − yb
−

n∑

i=1

1

y − zi
= −

∑n
i=1

µi

(y−zi)3∑n
i=1

µi

(y−zi)2
. (4.4)

We also use

∂

∂y
=

n∑

i=1

µi

y − zi

∂

∂µi
. (4.5)

Explicit calculations yield

D′ =
b2

2

∂3

∂y3
− X

∂2

∂y2
+ 2

∂

∂y
L−2(y) − 4b−2XL−2(y)

+ (2b−2 − 1)

[
L−3(y) −

∑

i

µi

(y − zi)3
∂

∂µi
− X

∑

i

µi

(y − zi)2
∂

∂µi

]
, (4.6)

where we defined

L−2(y) =
∑

i

1

y − zi

(
δ

δzi
+

∆
(2)
ji

y − zi

)
, (4.7)

L−3(y) = −
∑

i

1

(y − zi)2

(
δ

δzi
+

2∆
(2)
ji

y − zi

)
, (4.8)
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where the conformal dimensions ∆
(2)
ji

and ∆αi
are related by eq. (2.25).

The operator D′ can be understood as a generalization of the sℓ2 Knizhnik-

Zamolodchikov differential operator, which in our notations can be written as [3]

DKZ = b2 ∂2

∂y2
+ L−2(y) . (4.9)

4.2 Reformulation of the BPZ equation in terms of symmetry generators

If our identification of the symmetry algebra is correct, the differential equation D′Ω
(2)
n = 0

should have a reformulation in terms of the chiral fields T, J3, J−. This is a non-trivial

requirement on D′, and we will now show that it is satisfied.

Let us denote 〈Q〉 =
〈∏

Φji(µi|zi)
〉
. The actions of differential operators ∂

∂y
, L−2(y)

and L−3(y) on 〈Q〉 have immediate interpretations as insertions of the chiral fields

J3(y), T (y) and ∂T (y), for instance

∂

∂y
〈Q〉 =

〈
∑

i

∮

zi

dt
J3(t)

y − t
Q
〉

=

〈∮

y

dt
J3(t)

t − y
Q
〉

=
〈
J3(y)Q

〉
, (4.10)

where we used the formula (4.5) for ∂
∂y

and the OPE (2.7) of J3 with Φj(µ|z). Iterating

the actions of such differential operators yields results like

∂

∂y
L−2(y) 〈Q〉 =

∂

∂y
〈T (y)Q〉 = 〈∂TQ〉 +

〈
(J3T )(y)Q

〉
, (4.11)

where the normal-ordered product (J3T ) is defined as previously, see eq. (2.5). Moreover,

we have

∑

i

µi

(y − zi)3
∂

∂µi
〈Q〉 =

1

2

〈
∑

i

∮

zi

dt
∂2J3(t)

y − t
Q
〉

=

〈
1

2
∂2J3(y)Q

〉
. (4.12)

Finally, the factors of X in D′ can be related to insertions of ∂J− and ∂2J−, thanks to

eq. (4.4) and identities of the type

∑

i

µi

(y − zi)3
〈P(y)Q〉 =

1

2

〈∮

y

dt
∂2J−(t)

t − y
P(y)Q

〉
=

〈
1

2
(∂2J−P)(y) Q

〉
, (4.13)

which is valid for any operator P.

Therefore, the equation D′Ω
(2)
n = 0 with the operator D′ given in eq. (4.6) can be

rewritten as
〈
R(y)

∏
Φji(µi|zi)

〉
= 0, where

R =
1

2
b2(∂J−(J3(J3J3))) + 2(∂J−(J3T )) + [2b−2 + 1](∂J−∂T )

+
3

2
b2(∂J−(J3∂J3)) +

1

2
[b2 + 1 − 2b−2](∂J−∂2J3)

− 1

2
(∂2J−(J3J3)) + [−1 + b−2](∂2J−∂J3) − 2b−2(∂2J−T ) . (4.14)

We can already conjecture that, for all the values (3.22) of m such that the fields V−m
2b

is

degenerate, the BPZ equations can similarly be rewritten in terms of operators T, J−, J3.
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It is however not clear how to deduce our operator R from a null vector like (4.1), without

performing the explicit calculations as we did.

The equation
〈
R(y)

∏
Φji(µi|zi)

〉
= 0 of course does not mean that the operator R

should be set to zero, because this equation is valid only at special points y = y1 · · · yn−2.

These points were defined (2.17) as the zeroes of ϕ(t) =
∑n

i=1
µi

t−zi
; they can be character-

ized in terms of the operator J− by

〈
J−(y)

n∏

i=1

Φji(µi|zi)

〉
= 0 . (4.15)

Actually, for any operator P we have
〈
(J−P)(y)

∏n
i=1 Φji(µi|zi)

〉
= 0. Therefore, the

operator R is expected to vanish modulo operators of the type (J−P).

In other words, we expect that this operator corresponds to a subsingular vector R|0〉
in the vacuum module of our symmetry algebra. That is, if we would set the singular vector

J−|0〉 to zero, then R|0〉 would become a singular vector in the resulting coset module.

We are actually not setting J−|0〉 to zero, but the presumptive subsingular vector R|0〉
is nevertheless associated to differential equations satisfied by the correlation functions.

Relations between subsingular vectors and differential equations were found previously by

Dobrev [10] in the context of finite-dimensional symmetry algebras, but they do not seem

widespread in conformal field theory so far. 2

4.3 Subsingular vectors of the symmetry algebra

In order to show that the third-order differential equation can be deduced from our symme-

try algebra, we still have to prove that the operator R (4.14) corresponds to a subsingular

vector. We will actually investigate the more general operator

R{λi} = λ1(∂J−J3J3J3) + λ2(∂J−J3T ) + λ3(∂J−∂T )

+λ4(∂J−J3∂J3) + λ5(∂J−∂2J3) (4.16)

+λ6(∂
2J−J3J3) + λ7(∂

2J−∂J3) + λ8(∂
2J−T ) ,

which depends on arbitrary coefficients λ1 · · · λ8. Here and in the following we use the

shorthand notation ABCD = (ABCD) = (A(B(CD))) for multiple normal orderings,

see [9] for more details on calculations involving such expressions.

We will perform this investigation with the help of the free fields (φ, β, γ). Since the

map from (J−, J3, T ) to (φ, β, γ) defined by the equations (3.11), (3.12) and (3.2) is a

morphism of algebras, it can indeed be used for determining whether R{λi} generates a

nontrivial ideal of the coset algebra obtained by modding out the ideal generated by J−.

(This is the algebraic formulation of our subsingular vector problem.) So let us compute the

operator R{λi} in terms of the fields (φ, β, γ), modulo operators of the type (J−P) = (βP).

2I am very grateful to Vladimir Dobrev for pointing out that the notion of a subsingular vector is relevant

here, and for patiently explaning some of the literature on this topic to me.
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We will denote by ≃ the equality of operators modulo such terms. For example, we find

(J3(J3J3)) ≃ 2∂β∂γ − 1

2
∂2βγ − 3mb−1∂βγ∂φ − m3b−3∂φ3 , (4.17)

(J3T ) ≃ ∂β∂γ + mb−1∂φ3 − m(1 + b−2(1 − m))∂φ∂2φ , (4.18)

(J3∂J3) ≃ 1

2
∂2βγ + mb−1∂βγ∂φ + m2b−2∂φ∂2φ , (4.19)

(∂T ) ≃ −∂β∂γ − 2∂φ∂2φ + (b + b−1(1 − m))∂3φ , (4.20)

(∂2J3) ≃ −∂2βγ − 2∂β∂γ − mb−1∂3φ . (4.21)

We then compute

R{λi} ≃ [2λ1 + λ2 − λ3 − 2λ5] ∂β2∂γ +
[
−3mb−1λ1 + mb−1λ4

]
∂β2γ∂φ

+
[
−m3b−3λ1 + mb−1λ2

]
∂β∂φ3

+
[
−m(1 + b−2(1 − m))λ2 − 2λ3 + m2b−2λ4

]
∂β∂φ∂2φ

+
[
(b + b−1(1 − m))λ3 − mb−1λ5

]
∂β∂3φ +

[
−1

2
λ1+

1

2
λ4−λ5+λ6 − λ7

]
∂β∂2βγ

+
[
m2b−2λ6 − λ8

]
∂2β∂φ2 +

[
−mb−1λ7 + (b + b−1(1 − m))λ8

]
∂2β∂2φ .

Let us solve the equation R{λi} ≃ 0, which when satisfied implies that R{λi} corresponds

to a subsingular vector. This equation leads to a system of 8 linear equations for the 8

unknowns λ1 · · ·λ8. Actually, the first five equations form a closed subsystem of equations

for λ1 · · ·λ5. This subsystem has a nonzero solution only if its determinant vanishes, that

is if

(m − 1)(m − 2)(m − b2)(m − 2b2) = 0 . (4.22)

The four solutions of this equation correspond to the Liouville operators V−m
2b

being degen-

erate, leading to BPZ differential equations of order 2 or 3. This is therefore a strong check

of our claim that the ansatz (2.18) does define conformal field theories with symmetry

algebras generated by T, J3, J−. Let us perform a more detailed check in the case m = 2,

by explicitly computing the nonzero solution to the system R{λi} = 0:

λ1 =
1

2
b2 , λ2 = 2 , λ3 = 2b−2 + 1 (4.23)

λ4 =
3

2
b2 , λ5 =

1

2
(b2 + 1 − 2b−2) ,

λ6 = −1

2
, λ7 = −1 + b−2 , λ8 = −2b−2 .

With these values of of λi, the operator R{λi} (4.16) does agree with the operator R (4.14),

which we found by reformulating the third-order BPZ equation.

5. Concluding remarks

We have argued that for any choice of m and the central charge c, the object Ω
(m)
n of

eq. (2.18) can be interpreted as an n-point correlation function in a conformal field theory
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with a chiral symmetry algebra generated by the fields T, J3, J− with OPEs (3.14)–(3.19).

This conformal field theory is solvable in the sense that its correlation functions are known

in terms of Liouville correlation functions. Liouville theory itself has been solved in the

sense that its three-point function on the sphere is explicitly known, while its n-point func-

tions on arbitrary Riemann surfaces can in principle be deduced thanks to the conformal

symmetry of the theory. (See [1] for a review.) The solution of the new theory is therefore

not very explicit, and no closed formula can be written for its three-point function except

for some “degenerate” values of m (3.22) when it satisfies a differential equation.

This differential equation provided the most non-trivial test of our claims. In the case

m = 2, we compared the differential equation deduced from our chiral symmetry algebra

with the third-order BPZ equation, and found explicit agreement. We expect such an

agreement to hold for all degenerate values of m, and it would be interesting to check this

beyond case-by-case calculations.

There may exist other theories based on the same symmetry algebra. For instance,

in the case m = 1, the non-rational, non-unitary H+
3 model shares its symmetry algebra

with the unitary AdS3 WZW model and with the rational SU2 WZW models. For general

values of m, our model remains non-rational and non-unitary. (The lack of unitarity still

follows from Gawedzki’s H+
3 -model argument [2], although it is not quite clear what the

scalar product on the spectrum is, as J− has no conjugate field.) It would be interesting to

construct rational or unitary theories based on the same symmetry algebra. Note however

that our reasoning around eq. (3.21), which showed that in the case m = 1 the modes of

T, J− and J3 did generate the whole H+
3 spectrum, relied on the fact that the spectrum

is purely continuous. But the AdS3 and SU2 WZW models involve discrete and finite-

dimensional representations respectively, which presumably cannot be generated from the

modes of T, J− and J3. Therefore, a rational theory based on the (T, J3, J−) algebra would

probably differ from the SU2 WZW model and have a smaller spectrum.

We have not assumed any restrictions on the choice of the parametrs m and c. For

some purposes it might be useful to restrict say the central charge of the theory and

the conformal dimensions of the fields to be real. Such restrictions could be dictated by

particular applications. From the point of view of conformal field theory, the new theories

are however well-defined, and their correlators manifestly satisfy crossing symmetry, a very

stringent constraint. It is therefore possible to study issues like the solution of these theories

on Riemann surfaces with boundaries.
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